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Variational Data assimilation (3DVAR, 4DVAR)

Preconditioning

Variational Bias Correction

Background error covariance matrix

Large scale constraint (Jk, LSMIX)

The Object oriented prediction system (OOPS)

Roel Stappers (MET Norway) Variational data assimilation for NWP Budapest, Feb. 14, 2018 2 / 28



Data assimilation

The aim of data assimilation is to produce (optimal) estimates of the
state of the atmosphere (the analysis) by combining information from
observations with a short range forecast.

The analysis is used as initial condition for the numerical weather
prediction model to produce the forecast.

Analysis
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Forecast
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Observation operator

The observation operator H maps model state to observation space.

e.g.

H(x) y

0Picture from Lars Isaksen
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Variational data assimilation (3D-VAR)
In variational data assimilation the analysis xa is the model state that
minimizes the nonlinear cost function.

J(x) =
1

2
‖x− xb‖2B−1︸ ︷︷ ︸

Jb

+
1

2
‖H(x)− y‖2R−1︸ ︷︷ ︸

Jo

Where

xb is the background state. (a short range forecast).

y is a vector with observations.

B is the background error covariance. (Isotropic, homogeneous)

R is the observation error covariance (Often simply Diagonal)

H is the observation operator

The cost function can be derived from Bayes’ rule

p(x |y) =
p(y |x)p(x)

p(y)

Assuming Gaussian errors and using maximum likelihood.
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Variational data assimilation (4D-VAR)
In variational data assimilation the analysis xa is the model state x that
minimizes the nonlinear cost function.

J(x) =
1

2
‖x− xb‖2B−1 +

1

2
‖H(x)− y‖2R−1

In 4D-VAR nonlinear model integrations are performed in the observation
operator H to compare with observations at the correct time.

Xa

Xb

Time t0 t1
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Variational data assimilation (4D-VAR)

In variational data assimilation the analysis xa is the model state x that
minimizes the nonlinear cost function.

J(x) =
1

2
‖x− xb‖2B−1 +

1

2
‖H(x)− y‖2R−1

In 4D-VAR nonlinear model integrations are performed in the observation
operator H to compare with observations at the correct time.

J(x) =
1

2
‖x− xb‖2B−1 +

1

2

N∑
n=0

‖Hn(Mt0→tn(x))− yi‖2R−1
n
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The challenges for data assimilation in NWP

There are ≈ 108 unknown parameters (temperature, humidity,
pressure, wind speed and direction at each grid point in the model).

The cost function is non-convex and the constraints are nonlinear.

There is a strict time budget available for solving the problem.

For 4DVAR: evaluations of the constraints via forward integration of
the high resolution model is expensive and can only be performed a
few times in each forecast cycle.
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Incremental 3D/4D-VAR (Gauss-Newton approach)
The background xb is normally a good estimate of the analysis xa.
Write x = xb + δx then linearization of the observation operator gives:

H(x) ≈ H(xb) + Hxbδx

For simplicity we will drop the subscript xb and write H for the linearized
observation operator (Jacobian).
For 4D-VAR H includes the linearized model equations (with simplified
physics).
The nonlinear cost function

J(x) =
1

2
‖x− xb‖2B−1 +

1

2
‖H(x)− y‖2R−1

can be written in incremental form

J(δx) =
1

2
‖δx‖2B−1 +

1

2
‖Hδx− d‖2R−1

Where the innovation vector d = y −H(xb).
This is a standard (regularized) linear least squares problem.
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Incremental 3D/4D-VAR (Gauss-Newton approach)

The incremental cost function:

J(δx) =
1

2
‖δx‖2B−1 +

1

2
‖Hδx− d‖2R−1

Taking the gradient gives1

g(δx) = B−1δx + HTR−1(Hδx− d)

Setting the gradient to zero and rearranging gives

(B−1 + HTR−1H)δx = HTR−1d

Which gives

δx = (B−1 + HTR−1H)−1HTR−1d

Explicit computation of the inverse Hessian is not possible. Instead
iterative methods are used (Either Quasi-Newton or Krylov subspace
methods).

1The transpose HT (a.k.a. adjoint) is derived manually from the H code
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Iterative methods
Iterative methods that minimize the cost function follow the same basic
pattern

1 At iterate xk compute the cost function J(xk) and the gradient
gk = g(xk)

2 Compute a search directions pk and do a line search to
(approximately) minimize J(xk + αkpk) as a function of αk

3 Set xk+1 = xk + αkpk
4 Check the convergence criteria. If not converged set k := k + 1 and

repeat.

The methods differ in the way they update the search direction pk . A
large class of methods use update equations of the form

pk = βkpk−1 − Akgk (1)

xk+1 = xk + αkpk (2)
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Iterative methods: Quasi-Newton and conjugate gradient

pk = βkpk−1 − Akgk (3)

xk+1 = xk + αkpk (4)

Family of (nonlinear) conjugate gradient methods is obtain by setting
Ak = I.

Table: Nonlinear conjugate gradient methods (Ak = I)

Name β

Fletcher-Reeves βk = gTk gk/g
T
k−1gk−1

Polak-Ribière βk = gTk (gk − gk−1)/gTk−1gk−1
Hestenes-Stiefel βk = gTk (gk − gk−1)/(gk − gk−1)Tpk−1

For quadratic cost function the line search to compute α can be avoided
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Iterative methods: Quasi-Newton and conjugate gradient

pk = βkpk−1 − Akgk (5)

xk+1 = xk + αkpk (6)

The family of quasi-Newton methods is obtained by setting βk = 0.

Table: Quasi-Newton methods (βk = 0)

Name Inverse Hessian approximation

BFGS Ak = ... you can look this up

DFP Ak = Ak−1 −
Ak−1yk−1y

T
k−1A

T
k−1

yTk−1Ak−1yk−1
+

sk−1s
T
k−1

yTk−1sk−1

L-BFGS Ak = ...

Steepest descent Ak = I

Where: yk−1 = gk − gk−1 and sk = αkpk often A0 = I or A = diag(...).
In the code either M1QN3 (which implements an L-BFGS quasi-Netwon
method) or conjugate gradient is used.
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Multi-incremental strong constraint 4D-VAR
The integrations with the linear and adjoint model in H and HT are
expensive and normally run at lower resolution with simplified physics.
To take nonlinearities better into account the linear operators are
relinearized around updated guesses in, so called, outer loops.

1From Yannick TrémoletRoel Stappers (MET Norway) Variational data assimilation for NWP Budapest, Feb. 14, 2018 14 / 28



Multi-incremental strong constraint 4D-VAR
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Convergence properties conjugate gradient method
For the linear system Ax = b. Let x∗ be the minimum of the cost function
and xk the solution at inner loop iteration k Define ek = xk − x∗
Then we have

‖ek‖A ≤

(√
κ(A)− 1√
κ(A) + 1

)k

‖e0‖A

Where κ(A) = σmax (A)
σmin(A)

denotes the condition number.
The pattern of the increment is related to the shape of the leading
eigenvector of the Hessian of the 4D-Var cost function. Andersson et al.
(2000) have shown that this eigenvector is driven by the density and
accuracy of observations. They have shown that, in a simplified example
with n observations in the same location, an approximation of the
condition number of the minimisation problem is given by: 2

κ ≈ 2n
σ2b
σ2o

+ 1

2taken From Tremolet, a incremental 4D-VAR convergence study.
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First level Preconditioning

Let B = UUT . It can be shown that the solution is of the form

δx = Uχ

Using this control variable transform3 the cost function is

J(χ) =
1

2
‖χ‖2 +

1

2
‖HUχ− d‖2R−1

With gradient4

g(χ) = χ+ UTHTR−1(HUχ− d)

Setting the gradient of the preconditioned system to zero then gives

(I + UTHTR−1HU)χ = UTHTR−1d

The identity matrix here ensure that all eigenvalues are ≥ 1
3See chavarin.F90 for implementation
4See sim4d.F90 for implementation (add VarBC, TOVSCV, and allow for FG6=BG)
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Modelling the B matrix
Derber and Bouttier suggested 5

ζbal = ζ (7)

Du = D − DbalPbal(ζ) (8)

Tu = T − TbalPbal(ζ)− Tdiv (Du) (9)

(ps)u = ps − (ps)balPbal(ζ)− (ps)div (Du) (10)

Pbal is a linearized mass variable, determined by statistical regression
between spectral coefficients of vorticity and geopotential.

Tbal (etc.) is determined by statistical regression between
geopotential and temperature (etc.).

Tdiv [and (ps)div ] are given by statistical regression between
temperature [and ps] and divergence.

ζbal , Du, Tu, (ps)u are assumed to be uncorrelated.
5See also https://www.ecmwf.int/sites/default/files/elibrary/2003/9404-

background-error-covariance-modelling.pdf
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B matrix
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Variational Bias correction

Up to now it has been been assumed that observations are unbiased or
have been bias corrected.
Modification of cost function

J(x, β) =
1

2
‖x− xb‖2B−1︸ ︷︷ ︸

Jb

+
1

2
‖β − βb‖2

Bβ
−1︸ ︷︷ ︸

Jp

+
1

2
‖H(x) + Pβ − y‖2R−1︸ ︷︷ ︸

Jo

Note 1) in LAM the background for the VarBC parameters is taken
from the previous day not from the previous cycle.

Also the control variable transform for VarBC is not based purely on
Bβ but include estimate of PTR−1P. 6

6https://www.ecmwf.int/sites/default/files/elibrary/2004/8930-variational-bias-
correction-radiance-data-ecmwf-system.pdf
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Jk and LSMIX

To take advantage of the high quality ECMWF forecast for the large scales
an addition background term Jk can be added to the cost function

J(x) =
1

2
‖x− xb‖2B−1︸ ︷︷ ︸

Jb

+
1

2
‖x− xLS‖2V−1︸ ︷︷ ︸

Jk

+
1

2
‖H(x)− y‖2R−1︸ ︷︷ ︸

Jo

Here V−1 will only penalize deviations for the large scales. It can be
shown that adding Jk is equivalent to 7

J(x) =
1

2
‖x− x̃b‖2

B̃−1 +
1

2
‖H(x)− y‖2R−1

In Harmonie a simplified versions is available8 Activated by setting
LSMIXBC=true in config exp.h

7https://hirlam.org/trac/wiki/HarmonieSystemDocumentation/38h1.1/LSMIXandJk
8https://hirlam.org/trac/attachment/wiki/HarmonieSystemDocumentation/lsmixbc.ppt
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OOPS
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The object oriented prediction system
Another concern: IFS complexity
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It means growth of maintenance, development costs, and number of bugs.

Y. Trémolet OOPS Design November 2013 6 / 34

Fortran code becomes difficult to maintain and new data assimilation
techniques become difficult to implement.

Concerns about scalability of model and DA for >100k cores

ECMWF has decided to recode the “top-level” routines in C++ to obtain
are more flexible/modular code in which it is easier to formulate new DA
algorithms.
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Formulations of DA and flexibility in OOPS

Primal formulation (d = y −H(xg0 ), b = xb0 − xg0 )

(B−1 + HTR−1H)δx0 = B−1b + HTR−1d

Saddle point formulation

[
B−1 HT

H −R

] [
δx
λ

]
=

[
B−1b
d

]
Dual formulation
(3D/4D-PSAS)

(HBHT + R)λ = −d + Hb

δx = −BHTλ+ b

Weak constraint 4D-VAR

(LTD−1L + HTR−1H)δx = LTD−1b + HTR−1d

Saddle point weak constraint 4D-VAR etc. EDA, EnKF, ETKF
Flexibility to change linear equation solvers (PCG, MINRES, RPCG,
GMRES)
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Other issues

Flow dependent background covariance matrices

Long window weak constraint 4D-VAR

Ensemble data assimilation (Hybrid systems between ensemble
Kalman filtering and 4D-VAR)

Thank you!
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Single Obs

Exercise: Show that

δx = (B−1 + HTR−1H)−1HTR−1d

Can also be written as

δx = BHT (R + HBHT )−1d

For a single obs (R + HBHT )−1d is a scalar showing that a single obs
experiment can be used to visualize the structure (length scales and
correclations) of the B matrix
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Adjoint code an example

Suppose in nonlinear model we have the statement: x = y + z2

Corresponding line in tangent linear code: δx = δy + 2zδz

Write as a matrix δzδy
δx

 =

 1 0 0
0 1 0

2z 1 0

δzδy
δx


In the adjoint code corresponding statement isδz∗δy∗

δx∗

 =

1 0 2z
0 1 1
0 0 0

δz∗δy∗

δx∗


i.e

δz∗ = δz∗ + 2zδx∗

δy∗ = δy∗ + δx∗

δx∗ = 0
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Adjoint test and gradient test

By definition the adjoint

(Hδx, δy) =
〈
δx,HT δy

〉
Validity of the adjoint can be test by computing the left and right
hand side for some δx and δy . Equality should hold up to machine
precision.

Gradient test

lim
h→0

J(χ+ hδχ)− J(χ)

〈∇J, hδχ〉
ratio should approach 1 for small enough values of h (but not too
small because of round-off errors)
See NAMVARTEST logicals LADTEST LGRTEST.
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