

Screening:

Blacklisting, observation quality control, data thinning

Roger Randriamampianina

ALADIN/HIRLAM common data assimilation training week

Budapest, 10-15 February 2019

Outline

Need of well selected good observations for data assimilation

Code organisation

- -- Blacklisting of (bad) observations
- -- Selection of good observations
- -- Data thinning

Script tasks flow

-- ODB evolution

Output diagnostic

Need for well selected good observations -- some theoretical backgrounds

-- Data assimilation aims at building a best possible atmospheric state using observations and short range forecasts.

Best Linear Unbiased Estimator (BLUE) analysis:

$$x_a = x_b + K[y_o - H(x_b)] \qquad \quad K = BH^T(HBH^T + R)^{-1}$$

where:

 x_a is the analysis; x_b is the first guess or background; $H(x_b)$ - background value at observation space; and y_o is the observation B - background error; R - observation error

- -- observation and background errors are mutually uncorrelated;
- -- observation errors are (horizontally) uncorrelated.

Thinning, superobbing, supermodding

Selection of good observations -- Screening

Some important steps (screen.F90):

- -- DEALMOD Release unnecessary model fields
- -- SUSCRE1 Initialise screening on common lev 1
- -- SUFGER GERGER Setup FG error into obs location
- -- SUFGLIM Setup FG limits
- -- BLINT Initialise blacklisting interface
- -- BTEMPDUP Find (partial) duplicate of TEMP BUFR reports
- -- DECIS Make screening decision (most of the processes) is done here
- -- UPECMA Update the Extended CMA odb for compression
- -- PRSTA Print screening statistics
- -- DEALSCR Release the arrays used in screening

- -- The screening is the last step of the pre-processing of data in Arp/Ald/Arome DA system.
- -- We want to remove the wrong data and make the final choice inside the set of data which are said to be potentially acceptable by the quality control and the monitoring system.
- -- We need to control them against the background, to verify their vertical consistency and to thin them when their space resolutions are too high.

Selection of good observations -- Preliminary check

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate airep
- --REDUN- All redundancy check, incl lev. selec.
- --SCAQC- Scatterometer QC
- --NEW_THINN- Thinning of satellite data

PRECH:Preliminary check of observations:

- -- Check of completeness of the reports
- -- Check of the reporting practice for SYNOP/TEMP /PILOT mass observations [Ps & Z]
- -- check that there is observation error, final observation error, first-guess, vertical coordinate, etc...

BLACKHAT/BLACK:Blacklisting:

- Scanning for blacklisting :

A monitoring blacklist decision is applied for discarding the excessively noisy or biased observations. A selection of variables for assimilation is done using the data selection part of the blacklist file and the information hard-coded in Arp/Ald/Arome (orographic rejection limit, land-sea rejection...).

Blacklisting of observations (1)

- -- There are three ways:
 - 1)-- using the LISTE_LOC files (mainly for blacklisting of satellite instruments)
 - 2)-- using the LISTE_NOIRE_DIAP file (blacklisting parameters (groups) or stations)
 - 3)-- use src/blacklist/mf_blacklist.b convention

For (1) and (2), see presentation about Bator by Alena Trojakova.

- 3) uses coding convention *which needs compilation* of the code to be activated.
 - -- it's initialised in src/arpifs/obs_preproc/blinit.F90
 - -- Filled in src/arpifs/obs_preproc/black.F90

Blacklisting of observations (2)

blinit.F90 = (/gpfs/ecgb/perm/ms/srmonie/src/arpifs/obs_preproc) - GVIM	<pre>mf_blacklist.b = (/gpfs/ecgb/Harmonie/src/blacklist) - GVIM1</pre>
<u>File Edit T</u> ools <u>S</u> yntax <u>B</u> uffers <u>W</u> indow <u>H</u> elp	<u>File Edit Tools Syntax B</u> uffers <u>Window H</u> elp
⊨ 🖬 🔚 ≜ 🦘 🔶 ¾ 🗊 🖸 ⁄2 🗢 수 🎥 😭 ⊘ ⁰₃ 🗉 🍛 🕅 🞯	🖻 🖬 🔚 占 [🥎 🎓 [😹 🗊 🖸 [12] 🌳 🌳 [125] 🔡 🔗 [13] 🖼 🥥 [125] 🔯
CLDATA_NAME(1) = 'OBSTYP' ! observation type	external obstyp; ! 1) = 'OBSTYP' ! observation type
CLDATA_NAME(2) = 'STATID' ! station id	external_CHAR statid; ! 2) = 'STATID' ! station id
CLDATA_NAME(3) = 'CODTYP' ! code type	external codtyp; ! 3) = 'CODTYP' ! code type
CLDATA_NAME(4) = 'INSTRM' ! instrument type	external instrm; ! 4) = 'INSTRM' ! instrument type
CLDATA_NAME(5) = 'DATE' ! date	external date; ! 5) = 'DATE' ! date
CLDATA_NAME(6) = 'TIME' ! time	external time; ! 6) = 'TIME' ! time
CLDATA_NAME(7) = 'LAT' ! latitude	external lat; ! 7) = 'LAT' ! latitude
CLDATA_NAME(8) = 'LON' ! longitude	external lon; ! 8) = 'LON' ! longitude
CLDATA_NAME(9) = 'STALT' ! station altitude	external stalt; ! 9) = 'STALT' ! station altitude
CLDATA_NAME(10) = 'LINE_SAT' ! line number atovs	external line_sat;
CLDATA_NAME(11) = 'RETR_TYP' ! retrieval type	external retr_typ;
CLDATA_NAME(12) = 'QI_FC' ! EUMETSAT Quality Indicators: with forecast dependence	external qi_fc; ! 12) = 'QI_FC' ! quality indicator 1
CLDATA_NAME(13) = 'RFF' ! CIMSS Quality Indicator: Recursive Filter Flag	external rff; ! 13) = 'RFF' ! quality indicator 2
CLDATA_NAME(14) = 'QI_NOFC' ! EUMETSAT Quality Indicators: without forecast dependence	external qi_nofc; ! 14) = 'QI_NOFC' ! quality indicator 3
CLDATA_NAME(22) = 'SENSOR' ! satellite sensor indicator	external modoro; ! 15) = 'MODORO' ! model orography
CLDATA_NAME(23) = 'FOV' ! field of view number	external lsmask; ! 16) = 'LSMASK' ! land-sea mask
CLDATA_NAME(24) = 'SATZA' ! satellite zenith angle	external rlsmask; ! 17) = 'RLSMASK' ! floating point lsmask
CLDATA_NAME(27) = 'SOE' ! solar elevation elevation	external modps; ! 18) = 'MODPS' ! model surface pressure
CLDATA_NAME(28) = 'QR' ! quality of retrieval	external modts; ! 19) = 'MODTS' ! model surface temperature
CLDATA_NAME(29) = 'CLC' ! cloud cover	external modt2m; ! 20) = 'MODT2M' ! model 2 metre temperature
CLDATA_NAME(30) = 'CP' ! cloud top pressure	external modtop; ! 21) = 'MODTOP' ! model top level pressure (hPa)
CLDATA_NAME(31) = 'PT' ! product type	external sensor;
CLDATA_NAME(32) = 'SONDE_TYPE' ! sonde type	external fov; ! 23) = 'FOV' ! field of view number
CLDATA_NAME(33) = 'SPECIFIC' ! amsua=clwp	external satza; ! 24) = 'SATZA' ! satellite zenith angle
CLDATA_NAME(35) = 'GEN_CENTRE' ! Generating centre	external nandat; ! 25) = 'NANDAT' ! analysis date
CLDATA_NAME(36) = 'GEN_SUBCENTRE' ! Generating sub-centre	external nantim; ! 26) = 'NANTIM' ! analysis time
CLDATA_NAME(37) = 'DATASTREAM' ! defined in routine datastream in odb	external soe; ! 27) = 'SOE' ! solar elevation
CLDATA_NAME(39) = 'RETRSOURCE' ! retrieval source	external qr; ! 28) = 'QR' ! quality of retrieval
CLDATA_NAME(40) = 'SURFTYPE' ! surface type indicator	external clc; ! 29) = 'CLC' ! cloud cover
CLDATA_NAME(41) = 'SZA' ! solar zenith angl	external cp; ! 30) = 'CP' ! cloud top pressure
CLDATA_NAME(42) = 'REPORTYPE' ! MARS reportype	external pt; ! 31) = 'PT' ! product type
CLDATA_NAME(43) = 'SOLAR_HOUR' ! solar hour used for allsky data	external sonde_type;
CLDATA_NAME(44) = 'STATION_IDENTIFIER' ! Station identifier (integer) valid for some co	external specific ; ! 33) = 'SPECIFIC' ! amsua=clwp sur mer
ventional only	external sea_ice 34) = 'SEA_ICE' ! sea-ice fraction
123,48 54%	- 297,20 20%

blinit.F90

mf_blacklist.b

Blacklisting of observations -- the rules (3)

Example: blacklisting of SYNOP & DRIBU observations

```
----- SYNOP CONSTANT DATA SELECTION ------
if (OBSTYP = synop) then
   if VARIAB in (t2m, rh2m) then
       if (soe < 10.0 ) then fail(CONSTANT); endif:
   endif:
   if VARIAB in (u10m, v10m) then
       if (SPECIFIC > 0.0 ) then
          if (CODTYP in (11, 14, 16)) then fail(CONSTANT); endif;
          if (RLSMASK > 0.) then fail(CONSTANT); endif;
        end if:
       if (STALT >= 0.) and (abs(STALT - MODORO) > 200.0) then fail(CONSTANT); endif;
   endif;
   if VARIAB in (rh, q) then
       if (PRESS <= 300.) then fail(CONSTANT); endif;
   endif:
   if (VARIAB = rh2m) then
       if (CODTYP in (21, 22, 23, 24)) then fail(CONSTANT); endif;
       if (RLSMASK < 0.5) then fail(CONSTANT): endif:
       if (STALT >= 0.) and (abs(STALT - MODORO) > 200.0) then fail(CONSTANT); endif;
   endif;
endif;
     ----- DRIBU CONSTANT DATA SELECTION -------
if (OBSTYP = dribu) then
   if VARIAB in (u10m, v10m) then
       if (RLSMASK > 0.) then fail(CONSTANT); endif;
       if (STALT >= 0.) and (abs(STALT - MODORO) > 200.0) then fail(CONSTANT); endif;
   endif;
endif;
     ----- AIREP CONSTANT DATA SELECTION ------
if (OBSTYP = airep) then
   if VARIAB notin (u, v, t) then fail(CONSTANT); endif;
   if (PRESS < 50) then fail(CONSTANT); endif;
   if (PRESS > MODPS) then fail(CONSTANT); endif
```


First-guess/background check

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate airep
- --REDUN- All redundancy check, incl lev. selec.
- --SCAQC- Scatterometer QC
- --NEW_THINN- Thinning of satellite data

FIRST: Background quality control:

- -- It is performed for all the variables to be used in the assimilation
- -- The variance of the background departure is estimated by :

$$\langle y - H(x_b), y - H(x_b) \rangle \sim \sigma_o^2 + \sigma_b^2$$

- -- The estimate of variance for the normalized departure is given by : $(1 + \frac{\sigma_o^2}{\sigma^2}) = \lambda$
- -- If $\left(\frac{y-H(x_b)}{\sigma_b}\right)^2 > n*\lambda$ then observation y is suspected --> n (flag limit) =15 for wind observations, for example
- --> σ_{o} and σ_{b} are the observation and background errors σ_{b} is interpolated from the file called errgrib

Observation errors and its tuning through sigmao_coef

For conventional observations: in bator init mod.F90

SIGMAO COEF=1. JPRB

$$\begin{split} & \texttt{ECTERO(NSYNOP,2,41:42,1)} = \texttt{ECTERO(NSYNOP,2,41:42,1)} * \texttt{SIGMAO_COEF(NSYNOP)} \\ & \texttt{ECTERO(NAIREP,1,2:4,1:19)} = \texttt{ECTERO(NAIREP,1,2:4,1:19)} * \texttt{SIGMAO_COEF(NAIREP)} \\ & \texttt{ECTERO(NSATOB,:,3:4,1:19)} = \texttt{ECTERO(NSATOB,:,3:4,1:19)} * \texttt{SIGMAO_COEF(NSATOB)} \\ & \texttt{ECTERO(NDRIBU,1,1,1)} = \texttt{ECTERO(NDRIBU,1,1,1)} * \texttt{SIGMAO_COEF(NDRIBU)} \\ & \texttt{ECTERO(NDRIBU,1,41:42,1)} = \texttt{ECTERO(NDRIBU,1,41:42,1)} * \texttt{SIGMAO_COEF(NDRIBU)} \\ & \texttt{ECTERO(NDRIBU,1,41:42,1)} = \texttt{ECTERO(NDRIBU,1,41:42,1)} * \texttt{SIGMAO_COEF(NDRIBU)} \\ & \texttt{ECTERO(NTEMP,1,2:4,1:19)} = \texttt{ECTERO(NTEMP,1,2:4,1:19)} * \texttt{SIGMAO_COEF(NTEMP)} \\ & \texttt{ECTERO(NTEMP,1,41:42,1:19)} = \texttt{ECTERO(NTEMP,1,41:42,1:19)} * \texttt{SIGMAO_COEF(NTEMP)} \\ & \texttt{ECTERO(NPILOT,1,2:4,1:19)} = \texttt{ECTERO(NPILOT,1,2:4,1:19)} * \texttt{SIGMAO_COEF(NPILOT)} \\ & \texttt{ECTERO(NPILOT,1,41:42,1:19)} = \texttt{ECTERO(NPILOT,1,41:42,1:19)} * \texttt{ECTERO(NPILOT)} \\ & \texttt{ECTERO(NPILOT,1,41:42,1:19)} = \texttt{ECTERO(NPILOT,1,4$$

For satellite observations: in defrun.F90

!* 2.6 Modification of sigmaos with coefficient SIGMAO_COEF

WRITE(CLFMT,FMT="('("SIGMAO_COEF(1:',I2,') =",',I2,'F8.3)')")JPNOTP,JPNOTP WRITE(NULOUT,FMT=CLFMT) SIGMAO_COEF(:) IF(.NOT.LECMWF)THEN ROERR_RAD1C(:,:)=ROERR_RAD1C(:,:) * SIGMAO_COEF(NSATEM) DO JOBT=1,JPNOTP RBGQC(:,JOBT,:)=RBGQC(:,JOBT,:) / (SIGMAO_COEF(JOBT)*SIGMAO_COEF(JOBT)) ENDDO RBGQC_RAD1C(:,:,:)=RBGQC_RAD1C(:,:,:) / (SIGMAO_COEF(NSATEM)*SIGMAO_COEF(NSATEM)) ROERR_QSCAT = ROERR_QSCAT * SIGMAO_COEF(NSCATT) ENDIF

Observation operators

The observation operators HOP (hop.F90):

- -- OBSOP_RAD for radiance
- -- OBSOP_RADAR for radar
- -- OBSOP_CONV for conventional and retrievals
- -- OBSOP_GPSRO for GPS radio occultation
- -- OBS_OP_LIMB_RAD for limb radiance
- -- OBS_PRECIP_ACCUM for accum precipitation
- -- OBSOP_GPS_SURFACE for GPS ZTD
- -- OBSOP_COMPOSITION for atm. composition
- -- OBSOP_VARBC generic VarBC task in H

LGOM_PLUS_DUMP

--> GOM_PLUS_DUMP -- can be run offline

OBSOP_CONV - HRETR_CONV - ...

FIRST: Background quality control:

- -- It is performed for all the variables to be used in the assimilation
- -- The variance of the background departure is estimated by :

$$\langle y - H(x_b), y - H(x_b) \rangle \sim \sigma_o^2 + \sigma_b^2$$

- -- The estimate of variance for the normalized departure is given by : $(1 + \frac{\sigma_o^2}{\sigma_c^2}) = \lambda$
- -- If $\left(\frac{y-H(x_b)}{\sigma_b}\right)^2 > n * \lambda$ then observation y is suspected --> n (flag limit) =15 for wind observations, for example
- --> $\boldsymbol{\sigma}_{o}$ and $\boldsymbol{\sigma}_{b}$ are the observation and background errors $\boldsymbol{\sigma}_{b}$ is interpolated from the file called errgrib

Selection of good observations -- Vertical consistency check

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --REDUN- All redundancy check, incl lev. selec.
- --SCAQC- Scatterometer QC
- --NEW_THINN- Thinning of satellite data

VERTCO:Vertical consistency of multilevel reports

- -- The duplicated levels, in multi-level reports, are removed from the reports.
- -- If 4 consecutive layers are found to be of suspicious quality the data is considered as "really bad" these layers are rejected (T&Wind&Hum) or if it's about geopotential, then all data rejected.

DUPLI_NO_SQ/DUPLI:Removal of duplicate reports

-- In case of co-located reports of the same observation types, some or all of the content of one of the reports is rejected.

Selection of good observations -- Redundancy check

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --REDUN- All redundancy check, incl lev. selec involving lot of tasks/routines
- --SCAQC- Scatterometer QC

--NEW_THINN- Thinning of satellite data

An other complex process involving lot of tasks/routines (see the following slides)

REDSL: for surface level & REDUN: for all reports

Few examples:

- -- It is performed for the active reports that are co-located and originate from the same station.
- -- For land **Synop**, the report closest to the centre of the screening time window with most active data is retained.
- -- The ship **Synop** are redundant if the moving platforms are within a circle of 1 degree radius.
- -- **Temp** and **Pilot** from same station are considered at the same time in the redundancy check.
- -- A **Synop** mass observation is redundant if there are any **Temp** geopotential height observations (observed at the same time and the same station) that are no more than 50hPa above the **Synop** mass observation.

Selection of good observations -- Thinning

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --REDUN- All redundancy check, incl lev. selec.
- --SCAQC- Scatterometer QC
- --NEW_THINN- Thinning of satellite data

- -- The horizontal and vertical resolutions of several types of observations are too high to allow to use all of them in **Arp/Ald/Arm** analysis (knowing that no horizontal correlation of observation errors is supported)
- -- A horizontal thinning is performed for the Aircraft (Airep, Amdar, ...), the AMV (Satob or geowind) and the sat. observations (Atovs, IASI, ...etc) reports
- -- A vertical thinning is also performed for the Aircraft and the AMV reports
- -- A predefined minimum horizontal distance between the nearby reports from the same platform is enforced
- -- For moving (sat) platforms, a two steps thinning is performed: -- first with a minimum distance of RMIND {OBSTYPE} is
 - enforced
 - -- Then a repeated scan is performed to achieve the final separation of RFIND_{OBSTYPE}
 - -- RMIND_* and RFIND_* belong to NAMSCC

Selection of good observations -- Thinning (aircraft)

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --*REDUN- All redundancy check, incl lev. selec* MOVPL THIAIR
- --SCAQC- Scatterometer QC
- --NEW_THINN- Thinning of satellite data

THIAIR: thinning of aircraft data

- -- One flight consist of a set of reports
- -- Thinning is performed for each flight separately
- -- 3D boxes are constructed around model levels
- -- In each box the report closest to the analysis date with the most active observations is selected
- -- Box size is set in metres via **RFIND_AIREP** in **NAMSCC**.
- -- A minimum distance by **RFIND_AIREP** is enforced

Selection of good observations -- Thinning (satellite)

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --REDUN- All redundancy check, incl lev. selet
- --SCAQC- Scatterometer QC

--NEW_THINN- Thinning of satellite data

New_THINN: thinning of AMV data

- -- First a minimum distance of RMIND_SATOB is enforced
- -- Then a repeated scan is performed to achieve the final separation of RFIND_SATOB.
- -- We want to keep only one obs per box defined horizontally by the minimum distance and vertically around the standard levels
- -- The obs will be chosen according to the following criterias :
 - -- Number of active data in the report
 - -- The closest report to the time that corresponds to the centre of the screening time window

Selection of good observations -- Thinning (satellite)

Some important steps (decis.F90):

- -- GETDB Get the necessary data
- -- PRECH Preliminary check of datum/reports
- -- BLACKHAT BLACK Blacklisting
- -- FIRST First guess check
 - -- FGWND All winds
 - -- FGCHK Other parameters
- -- VERTCO Vertical consistency check
- -- REDSL- remove redundancy at surf level
 - -- TEMP/PILOT reject redundancy
- --FLGTST- Transform datum/report to status
- --DUPLI_NO_SQ/DUPLI- remove duplicate (airep)
- --REDUN- All redundancy check, incl lev. selet
- --SCAQC- Scatterometer QC

--NEW_THINN- Thinning of satellite data

Observations processing and executable

Observations processing and executable

some important namelists

Few tips on how to check the outputs?

grep "SCREENING STATISTICS"

You can see all this:

STATUS SUMMARY OF REPORTS:

STATUS SUMMARY OF DATA:

EVENT SUMMARY OF REPORTS:

EVENT SUMMARY OF DATA:

NUMBER OF VARIABLES IN DIFFERENT OBSERVATION TYPES:

NUMBER OF DEPARTURES IN DIFFERENT OBSERVATION TYPES:

NUMBER OF MISSING DEPARTURES IN DIFFERENT OBSERVATION TYPES:

*** SCREENING STATISTICS

*** FOR WHOLE OBSERVATION ARRAY

STATUS SUMMARY OF REPORTS:

OB.TYP	REPORTS	ACTIVE	PASSIVE	REJECTED	BLACKLISTED
1	4919	633	0	4286	0
2	2538	2255	0	283	0
3	0	0	0	0	0
4	0	0	0	0	0
5	2.5	3	0	22	0
6	0	0	0	0	0
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0
11	0	0	0	0	0
12	0	0	0	0	0
13	0	0	0	0	0
14	0	0	0	0	0
15	0	0	0	0	0
16	0	0	0	0	0
17	0	0	0	0	0
18	0	0	0	0	0
TOT	7482	2891	0	4591	0
STATUS SUI	MMARY OF DATA:				
OB.TYP	REPORTS	ACTIVE	PASSIVE	REJECTED	BLACKLISTED
1	28499	1820	3355	12604	16359
2	7667	6824	0	942	139
3	0	0	0	0	0
4	0	0	0	0	0
5	16663	2407	0	8507	5941
6	0	0	0	0	0
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0
11	0	0	0	0	0
12	0	0	0	0	0
13	0	0	0	0	0
14	0	0	0	0	0
15	0	0	0	0	0
16	0	0	0	0	0
17	0	0	0	0	0
18	0	0	0	0	0
тот	52829	11051	3355	22053	22439

Hirlam

Few tips on how to check the outputs?

more	Codetype 11	=== SYNOP Land Man	ual Report	10/	ol n	
•	Variable	DataCount	Jo_Costfunction	JO/n	ObsErr	BgErr
	U10	498	127.2994859928	0.26	0.200E+01	U.000E+00
	H2	254	94.04037027786	0.37	0.100E+00	0.000E+00
	Z	240	70.08362358227	0.29	0.785E+02	0.000E+00
	T2	255	119.06929/5021	0.47	0.1408+01	0.0008+00
	Codetype 14	=== SYNOP Land Aut	omatic Report			
	Variable	DataCount	Jo_Costfunction	J0/n	OBSETT	BGETT
	010	2692	878.0823445974	0.33	0.2008+01	0.0008+00
	H2	1313	6/8./43/649819 360 12204017C1	0.52	0.1008+00	0.0008+00
	3	1035	258.1328401/51	0.26	0.7858+02	0.0008+00
	T2	1348	618.4/9/321929	0.45	0.1408+01	0.0008+0
	Codetype 21	=== SINOP-SHIP Rep	ort			2.2
	Variable	DataCount	Jo_Costfunction	JO/n	ObsErr	BgErr
	U10	4.6	41.07659586235	0.89	0.270E+01	0.000E+00
	H2	20	20.02603520739	1.00	0.100E+00	U.U00E+00
	Z	23	877.0615862535	38.13	0.785E+02	U.UUUE+00
	T2	22	23.02903612921	1.05	0.140E+01	0.000E+00
	TS	14	3.050308098383	0.22	0.150E+01	0.000E+00
	Codetype 24	=== SYNOP Automati	c SHIP Report		52. 2	
	Variable	DataCount	Jo_Costfunction	JO/n	ObsErr	BgErr
	010	552	160.4898414612	0.29	0.270E+01	0.000E+00
	H2	355	165.2673491480	0.47	0.100E+00	0.000E+00
	Z	376	60.71227402200	0.16	0.785E+02	0.000E+00
	Τ2	392	205.1963606272	0.52	0.140E+01	0.000E+00
	TS	60	31.76533099757	0.53	0.150E+01	0.000E+00
	Codetype 170	=== BUFR Land SYNO	P Report		12	
	Variable	DataCount	Jo_Costfunction	JO/n	ObsErr	BgErr
	010	4262	1290.646000818	0.30	0.200E+01	0.000E+00
	H2	2182	1163.419225604	0.53	0.100E+00	0.000E+00
	3	1590	434.851100/921	0.27	0.7858+02	0.0008+00
	TZ	2232	1038.055585435	0.47	0.1408+01	0.0008+00
	Codetype 182	=== BUFR Ship STNO	P Report	10 /	ol n	
	Variable	DataCount	Jo_Costfunction	JO/n	ODSETT	BgErr
	010	/12	353./903/2/960	0.50	0.2008+01	0.0008+00
	H2	451	K 192.313651655/	0.43	0.1008+00	0.0008+00
	2	471	991.0244067424	2.02	0.1408102	0.0008+00
	12	488	242.804/040800	0.30	0.1408+01	0.0008+00
	15	103	35.35188034/88	0.38	0.1308401	0.0008+00
	ObsType 1 Total:	21987	10148.56316598	0.46		
	Obstype 2 ===	= AIRBP, Aircraft d	ata			
	Codetype 141	=== AIREP Aircraft	Report			
	Variable	DataCount	Jo_Costfunction	JO/n	ObsErr	BgErr
	U	2	0.6100299231297	0.31	0.279E+01	0.000E+00

Few tips on how to check the outputs?

	End of JO-table (JOT)																					
grep "SCREENING STATISTICS"	Observation usage sunmary																					
X7 11.4	Obstyp= 1 === SYNOP,	Land statio	ons and ships																			
You can see all this.				-																		
			c	latum_status	8		datun_ev	vent1 %	(1)	ounded U	P to no	earest i	integer	r, see	key belo	.ow)						
	Codetype	Variable	DataCount	Activ Par	ss Rej) Black	1	2 3	4	5 6	7 8	9 10	11)	12 13	14 15	16 1	17 18	19 20	21 22	: 23 2	4 25	. 2
	11 SYNOR Land Manual Report	111.0	469	0.0.0	0 0 0	100.0	0	0 0				0 0		0 0	0 0		0 0	0 0	0			
and more further down	11 SYNOP Land Manual Report	82	254	0.0 0.	0 0.0	100.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0		0 0	6
	11 SYNOP Land Manual Report	7	240	0.0 0.	0 0.0	100.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0.10	1 0	0 0	6
	11 SYNOP Land Manual Report	T2	256	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	υÖ	0 0	,
	14 SYNOP Land Automatic Report	U10	2692	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 0	0 0	/ 0	0 0	e - 1
	14 SYNOP Land Automatic Report	H2	1313	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	, 0	0 0	·
	14 SYHOP Land Automatic Report	3	1035	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	. 0	0 0	0 0	0 100	, 0	0 0	6
	14 SYNOP Land Automatic Report	т2	1348	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0) 0	0 0	1
	21 SYNOB-SHITE B	111.0	16	0.0.0	0 0 0	100.0	0	0 0	0 1	0 0	0 0	0 0		0 0	0 0		0 100	0 0	0			<u>.</u>
	21 SVNOP-SHIP Report	H2	40	0.0 0.	0 0.0	100.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	1 0	0 0	ê i
	21 SYNOP-SHIP Paperk	7	20	0.0 0.	0 4 3	100.0	0	0 0	0	0 0	0 5	0 0	0	0 0	0 0	0	0 0	0 0	0	1 0	0 0	6
	21 STHOP-SHIP Report		23	0.0 0.	.0 4.3	100.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 1		0 0	
	21 STHOP-SHIP Report	TC	1.4	0.0 0.	0 0.0	100.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	1 0	0 0	
	ar and and agore	10		0.0 0.		100.0	0	0 0					0	0 0	0 0	0	0 0	0 0				
	24 SYNOP Automatic SHIP Report	U10	552	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 100	0 0	0 .	0 0	0 0	,
	24 SYNOP Automatic SHIP Report	H2	355	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	3 0	0 .	0 0	0 0	,
	24 SYNOP Automatic SHIP Report	5	376	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 '	2 0	0 0	,
	24 SYNOP Automatic SHIP Report	T2	392	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 3	0 0	0	0 0	0 0	0	0 0	0 0	0 .	0 0	0 0	, i
	24 SYNOP Automatic SHIP Report	TS	60	0.0 0.	.0 0.0	100.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	/ 0	0 0	
	170 BUFR Land SYNOP Report	010	42.62	3.7 0.	.0 10.5	85.8	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 11	0 0	, 0	0 0	8.1
	170 BUFR Land SYNOP Report	H2	2182	18.9 0.	.0 59.9	21.3	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	1 50	0 1	, 0	0 0	8 3
	170 BUFR Land SYNOP Report	2	1590	24.8 0.	.0 75.2	0.0	0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 76	0 100	, 0	0 0	6
	170 BUFR Land SYNOP Report	T2	2232	24.2 0.	.0 75.8	0.0	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 /6	0 1	. 0	0 0	6
	182 BUFR Ship SYNOP Report	U10	712	18.3 0.	.0 76.4	5.3	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 77	0	0 (0 0	<i>,</i>
	182 BUFR Ship SYNOP Report	H2	451	0.9 0.	.0 6.0	93.1	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	2 6	0 .	0 0	0 0	,
	182 BUFR Ship SYNOP Report	2	471	17.0 0.	.0 83.0	0.0	0	0 0	0	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 83	0 1	/ 0	0 0	1
	182 BUFR Ship SYNOP Report	T2	488	16.8 0.	.0 83.2	0.0	0	0 0	dis 1	0 0	0 2	0 0	0	0 0	0 0	0	0 0	0 84	0	0 (0 0	,
	182 BUFR Ship SYNOP Report	TS	103	20.4 0.	.0 79.6	5 0.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 80	0 '	/ 0	0 0	e - 1
	the second second second																					
	Obstype 2 === AIREP,	Aircraft da	ita																			
				atum etatue			datum er	iont1 k	1.	ounded t	P to p	oarost	intege	r	key hel	(mail)						
	Codetype	Variable	DataCoupt	Activ Par	aa Roi	Black	1	2 3	4	5 6	7 9	9 10	11	12 13	14 15	16 .	17 18	19 20	21 2	2 23 2	4 25	<u> </u>
	codecype	var rabre	Datacount	ACCEV THE	an nej	Juner			20 3			- 10			14 15			1.5 1.0				-
	141 AIRRP Aircraft Report	T	2	100.0 0.	.0 0.0	0.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	r
	141 AIREP Aircraft Report	т	1	100.0 0.	.0 0.0	0.0	0	0 0	0 1	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	,
	146 WIGOS ANDAR Aircraft Report	U	5008	88.8 0.	.0 10.9	0.2	0	0 0	0 1	0 0	0 1	0 0	0	0 0	1 0	0	0 0	0 11	0 '	υ 0	0 0	,
	146 WIGOS ANDAR Aircraft Report	т	2537	88.8 0.	.0 10.8	8 0.3	0	0 0	0 1	0 0	0 1	0 0	0	0 0	0 0	0	0 0	0 11	0 '	1 0	0 0	ć –

Few tips on how to check the outputs? datum_status and datum_event1

Obstype 5 === TEMP, Radiosondes

		d	latum_sta	tus 8		datum_	even	t1 %		(rou	nded	UP	to n	eare	st i	nte	ger,	see	key	belo	w)										
Codetype	Variable	DataCount	Activ	Pass	Rej Black	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2	21	2	2 23	24	25	26
35 TEMP Land Report	U	1970	0.0	0.0	0.0 100.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	- 1) (0 0) 0	0	0
35 TEMP Land Report	U10	22	0.0	0.0	0.0 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) (0 0) 0	/ 0	0
35 TEMP Land Report	н	639	0.0	0.0	6.7 100.0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	8) (0 (, 0	/ 0	0
35 TEMP Land Report	H2	11	0.0	0.0	0.0 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0) (1	0 () 0	/ 0	0
35 TEMP Land Report	т	639	0.0	0.0	5.3 100.0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0) ()	0 0) 0	/ 0	0
35 TEMP Land Report	Z	607	0.0	0.0	1.2 100.0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0		0 0		0 () 0	/ 0	0
35 TEMP Land Report	т2	11	0.0	0.0	0.0 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) (0 (, 0	/ 0	0
35 TEMP Land Report	Q	556	0.0	0.0	18.5 116.9	0	17	17	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	9) (0 () 0	0	0
109 BUFR Land TEMP	U	4014	24.4	0.0	75.5 0.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	7	5 0		0 () (0 0	0
109 BUFR Land TEMP	U10	24	0.0	0.0	8.3 91.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 3	9 0		0 () ()	1 0	0
109 BUFR Land TEMP	н	2007	16.1	0.0	50.2 33.8	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	1	5) (1	0 (, 0	/ 0	0
109 BUFR Land TEMP	H2	12	16.7	0.0	66.7 16.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0)	0 0) 0	/ 0	0
109 BUFR Land TEMP	т	2007	24.4	0.0	75.5 0.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	7	5 0		0 () 0	/ 0	0
109 BUFR Land TEMP	Z	2019	14.0	0.0	85.8 0.2	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	11	0	0	7	5 0	1	0 () 0	/ 0	0
109 BUFR Land TEMP	т2	12	16.7	0.0	66.7 16.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0		0 () 0	/ 0	0
109 BUFR Land TEMP	Q	2019	16.1	0.0	50.2 33.7	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	1	5	. 0		0 () 0	/ 0	0

datum event1 key

1= MISSING VERTICAL COORDINATE 2= MISSING OBSERVED VALUE 3= MISSING FIRST GUESS VALUE 4 = REJECTED DUE TI RDB FLAG 5= ASSIM OF CLOUD-AFFECTED RADIANCE **5= BAD REPORTING PRACTICE** 7= VERTICAL POSITION OUT OF RANGE 8= TOO BIG FIRST GUESS DEPARTURE 9= TOO BIG DEPARTURE IN ASSIMILATION 10= TOO BIG OBSERVATION ERROR 11= DEDUNDANT DATUM 12= REDUNDANT LEVEL 13= NOT AN ANALYSIS VARIABLE 14= DUPLICATED DATUM/LEVEL 15= TOO MANY SURFACE DATA/LEVELS 16= LEVEL SELECTION 17= VERTICAL CONSISTENCY CHECK 18= VERTICAL COORDINATE CHANGED FROM Z TO P 19= COMBINED FLAGGING 20= DATUM REJECTED DUE TO REJECTED REPORT 21= VARIATIONAL QC PERFORMED 22= OBS ERROR INCREASED 23= CLOUD CONTAMINATION 24= RAIN CONTAMINATION 25= AEROSOL CONTAMINATION 26= BAD EMISSIVITY

3

